首页 » 英国代写 » 计算机代写|COM3524 Group-based Assignment – Applications of Cellular Automata

计算机代写|COM3524 Group-based Assignment – Applications of Cellular Automata

这是一篇来自英国的关于基于组的分配-细胞自动机应用的计算机代写

 

Before you start, please read the user documentation for the Python-based 1D and 2D Cellular Automata Simulator available on Blackboard or at http://pjworsley.github.io/capyle/. The 2D version of this custom-built software, effectively a Game of Life (GoL) simulator, will be your starting point the project. You need to understand its existing structure, then adapt it to solve the problem described below.

The aim of this assignment is to introduce you to the idea of how a Bioinspired Computational Method (Cellular Automata-based Simulation) can be applied to represent and investigate an important real world system: namely the spread of a forest fire.

After completing this project you should be able to work in a group to:

  • Analyse a real-world problem and translate this to a list of computational requirements
  • Decompose the requirements into a list of computational (and other) tasks
  • Implement these tasks effectively by understanding and adapting an existing code-base (note that the main criteria will relate to functionality, rather than elegance)
  • Plan and run computational simulations in order to explore specific questions
  • Present your results in a clear and precise way, in accordance with a short paper (a template is supplied)
  • Communicate your ideas in a way that is clear to a non-computer scientist
  • Reflect critically on the limitations of your approach
  • Carry out a literature search and summarise work reported in journal papers IN YOUR OWN WORDS (part of the short paper mentioned above)

Note that though some of these skills are specific to this module, many of the above are useful for computer scientists and software engineers in general. You are not expected to have all these skills now but it is expected that you will learn a lot by interaction with the lecturer and demonstrators during the forthcoming lab sessions.

You are requested to submit a single A4 page Problem Analysis and Work Plan before the 2nd Forest Fire Computer Lab (15th November). This should include a list of all the tasks you have identified as being necessary to complete this assignment and a summary of what your collaborative approach will be (i.e. who does what and when – a Gantt Chart would be ideal). This plan will not receive a formal mark but is an important opportunity for feedback prior to completion and submission of your report. (email to P.Watton@sheffield.ac.uk before Monday 15th Nov).

Background: Modelling Wild Fires

The propagation of forest fires (wild fires) over particular terrains lends itself naturally to simulation with a CA. The array of cells represents the terrain over which the fire can spread, the state of each cell represents whether it is currently on fire (effectively “on” or “off”), and rules of varying complexity can be developed to model the fire spread.

In the simplest implementation, fires are initialised at specific positions on a grid of cells and each cell simply changes state to “on fire” if a neighbour is on fire. Additional complexity can be included by assigning a fuel resource parameter to each cell which is depleted over a number of generations, after which the fire goes out. This fuel parameter can be varied over the array of cells to represent different sorts of terrain. Depending on the timescale of the model, cells will either remain “off” indefinitely after the fuel level is depleted (though very long timescale models may include the concept of regrowth).

Additional levels of complexity could allow for any other factors that influence the way that the fire can spread. For instance, the neighbourhood rules can be adapted to introduce the concept of uncertainty by the use of stochastic-based decisions (e.g. the probability of propagation of the fire is based on the number of “on fire” neighbouring cells). In addition, neighbour probabilities can be adapted to model the effect of e.g. gradient and wind direction.

Statement of the problem

Figure 1: Schematic of region

A town in the USA is located in a region prone to fire fires. Specifically, town officials have become concerned about the possible fire risk posed to the town by a power generating plant that is situated approximately 30km to the north-east. A new waste incinerator – another potential source of ignition – has been proposed to be sited approximately 30km north-west of the town.

Between the town and these sites there are different types of terrain including:

  • Large areas of chaparral – fairly dense, low lying pine vegetation that catch fire quite easily, and each square km can burn for a period of several days.
  • large reservoir/lakes
  • A canyon containing scrubland or grassland which ignites very easily, each square km burns for a period of several hours
  • Dense forest containing trees that don’t ignite very easily, but once they are alight, each km2 can burn for up to one month.

A schematic of the region is shown in the figure below.


程序辅导定制C/C++/JAVA/安卓/PYTHON/留学生/PHP/APP开发/MATLAB


本网站支持 Alipay WeChatPay PayPal等支付方式

E-mail: vipdue@outlook.com  微信号:vipnxx


如果您使用手机请先保存二维码,微信识别。如果用电脑,直接掏出手机果断扫描。