首页 » 机器学习辅导 » 机器学习代写 | SIT720 Machine Learning Assessment Task 4: Problem solving task

机器学习代写 | SIT720 Machine Learning Assessment Task 4: Problem solving task

本次澳洲代写是机器学习的一个assessment task,需要输出程序和报告

Questions

1. What is an ensemble classifier? Name some of the popular ensemble methods (at least three) and which
one you prefer and why? (2 marks)

2. Let’s assume we have a noisy dataset. You want to build a classifier model. Which classifier is appropriate
for your dataset and why? (2 marks)

Background

In the modern world, customer details are very important to suggest any product for buying. Gender, age and
education have impact on level of consumption of different products. So, it is essential for businesses to
analyse their customer details to better understand consumer behaviour and their impact on various products.

Dataset filename: Customer relationship marketing (CRM).csv

Dataset description: This dataset includes data on customer details and their response to buy any products.

The data contains 20 attributes and 9134 records.

Features and labels: The attribute names are listed below.

I. State
II. Customer Lifetime Value
III. Response
IV. Coverage
V. Education
VI. Effective To Date
VII. EmploymentStatus
VIII. Gender
IX. Income
X. Location Code
XI. Marital Status
XII. Monthly Premium Auto
XIII. Months Since Last Claim
XIV. Number of Open Complaints
XV. Number of Policies * Policy
XVI. Renew Offer Type
XVII. Sales Channel
XVIII. Total Claim Amount
XIX. Vehicle Class

Questions

4. Analyse the importance of the features for predicting customer response using two different approaches.
Explain the similarity/difference between outcomes. (5 marks)

5. Create three supervised machine learning (ML) models except any ensemble approach for predicting
customer response. (10 Marks)

a. Report performance score using a suitable metric. Is it possible that the presented result is an
overfitted one? Justify.

b. Justify different design decisions for each ML model used to answer this question.

c. Have you optimised any hyper-parameters for each ML model? What are they? Why have you
done that? Explain.

d. Finally, make a recommendation based on the reported results and justify it.

6. Build three ensemble models for predicting customer response. (6 Marks)

a. When do you want to use ensemble models over other ML models?

b. What are the similarities or differences between these models?

c. Is there any preferable scenario for using any specific model among set of ensemble models?

d. Write a report comparing performances of models built in question 5 and 6. Report the best
method based on model complexity and performance.

e. Is it possible to build ensemble model using ML classifiers other than decision tree? If yes, then
explain with an example.


程序辅导定制C/C++/JAVA/安卓/PYTHON/留学生/PHP/APP开发/MATLAB


本网站支持 Alipay WeChatPay PayPal等支付方式

E-mail: vipdue@outlook.com  微信号:vipnxx


如果您使用手机请先保存二维码,微信识别。如果用电脑,直接掏出手机果断扫描。

blank